

Introduction

- Biofuels have the potential to reduce reliance on fossil fuels whiles reducing environmental impacts and greenhouse gas emissions.
- Biofuel makes a small contribution to our energy demand whiles fossil fuels contributing approximately 87 percent of energy having a negative impact of increase in global warming.
- To limit global warming, biofuel production should be increased. This would require large scale deployment of biofuel feedstock production and advanced technologies in biofuel production.
- The food versus fuel debate calls into question the ethics of diverting land from food to biofuel production.

Food versus Fuel

- Bioenergy production from first generation (edible) biofuel feedstock may compete with food production and as consequence affect food security.
- A shift towards increasing production of second generation (non-edible) biofuel feedstocks and third generation biofuels along with advanced technologies of genetically engineered algae biomass would avoid the competition for food.
- Food and bioenergy need not compete for land, instead, biofuel crops should be integrated into existing landscape and agricultural lands in a multifunctional approach to improve use as food, fuel and for other ecosystem services.

Biomass Feedstock

1st Generation

2nd Generation

Edible biomass

- Starch crop (Wheat, corn)
- Sugar crops (Sugarcane, sugar beet)
- Oil seed crop (Oil palm, rapeseed)

Non-edible biomass

- Perennial energy crop (e.g., Willow, Poplar)
- Short rotation forestry crops (Eucalyptus)
- Agricultural residues (wheat straw, rice husk)
- Forestry residues (Forest thinning, saw dust)

3rd Generation

4th Generation

Algae biomass

- Microalgae
- Macroalgae

 Genetically engineered algae

Implication of use of feedstock for biofuel

 Impact on food security due to competition for direct land use. Deforestation and increases in greenhouse gas (GHG) emission. Loss of biodiversity. Compete for water resources. 	 Production may not have direct impact on food production since they are grown for different purposes, mainly for animal feed production.
 Do not compete for food. Produce high amounts of biomass and environmental benefits. Generate negative emissions using carbon capture and storage (BECCS). 	 Planting on marginal land avoids competition for land use and food. Integrate into existing landscape and agricultural lands in a multifunctional approach to offer multiple benefits including use as fuel and other ecosystem services.
 No competition for food and land. Do not require arable or big land area for production. Carbon sink source. No competition for food and land. Do not require arable or big land area for production. 	 Promising sustainable biofuel feedstock due to high biofuel productivity and ability to capture large amounts of carbon dioxide Research ongoing. Sustainable biofuel feedstock in future, due to high biofuel productivity and ability to capture large amount of carbon dioxide. Early stages of technology development.